Traces on algebras of parameter dependent pseudodifferential operators and the eta–invariant

نویسندگان

  • Matthias Lesch
  • Markus J. Pflaum
چکیده

We identify Melrose’s suspended algebra of pseudodifferential operators with a subalgebra of the algebra of parametric pseudodifferential operators with parameter space R. For a general algebra of parametric pseudodifferential operators, where the parameter space may now be a cone Γ ⊂ Rp, we construct a unique “symbol valued trace”, which extends the L2–trace on operators of small order. This construction is in the spirit of a trace due to Kontsevich and Vishik in the nonparametric case. Our trace allows to construct various trace functionals in a systematic way. Furthermore we study the higher–dimensional eta–invariants on algebras with parameter space R 2k−1. Using Clifford representations we construct for each first order elliptic differential operator a natural family of parametric pseudodifferential operators over R 2k−1. The eta–invariant of this family coincides with the spectral eta–invariant of the operator. 1991 Mathematics Subject Classification. 58G15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 1 99 8 Traces on algebras of parameter dependent pseudodifferential operators and the eta – invariant

We identify Melrose’s suspended algebra of pseudodifferential operators with a subalgebra of the algebra of parametric pseudodifferential operators with parameter space R. For a general algebra of parametric pseudodifferential operators, where the parameter space may now be a cone Γ ⊂ Rp, we construct a unique “symbol valued trace”, which extends the L2–trace on operators of small order. This a...

متن کامل

An Index Theorem for Families Elliptic Operators Invariant with Respect to a Bundle of Lie Groups

We define the equivariant family index of a family of elliptic operators invariant with respect to the free action of a bundle G of Lie groups. In this paper we concentrate on the issues specific to the case when G is trivial, so the action reduces to the action of a Lie group G. For G simply-connected solvable, we then compute the Chern character of the (equivariant family) index, the result b...

متن کامل

An Index Theorem for Families of Elliptic Operators Invariant with Respect to a Bundle of Lie Groups

We define the equivariant family index of a family of elliptic operators invariant with respect to the free action of a bundle G of Lie groups. If the fibers of G → B are simply-connected solvable, we then compute the Chern character of the (equivariant family) index, the result being given by an Atiyah-Singer type formula. We also study traces on the corresponding algebras of pseudodifferentia...

متن کامل

An Index Theorem for Families Invariant with Respect to a Bundle of Lie Groups

We define the equivariant family index of a family of elliptic operators invariant with respect to the free action of a bundle G of Lie groups. If the fibers of G → B are simply-connected solvable, we then compute the Chern character of the (equivariant family) index, the result being given by an Atiyah-Singer type formula. We also study traces on the corresponding algebras of pseudodifferentia...

متن کامل

Institute for Mathematical Physics Traces on Algebras of Parameter Dependent Pseudodiierential Operators and the Eta{invariant Traces on Algebras of Parameter Dependent Pseudodiierential Operators and the Eta{invariant

We identify Melrose's suspended algebra of pseudodiierential operators with a subalgebra of the algebra of parametric pseudodiierential operators with parameter space R. For a general algebra of parametric pseudodiierential operators, where the parameter space may now be a cone ? R p , we construct a unique \symbol valued trace", which extends the L 2 {trace on operators of small order. This al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999